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Introduction

In 2021, the Immediate Response Project Steering Group of the Al & Pandemic Response
Subgroup commissioned The Future Society (TFS) to develop an updated and upgraded
catalog of Al initiatives with the potential to combat COVID-19 and other future pandemics.
The research builds upon last year’s report, Responsible Al in Pandemic Response.

An impact assessment has been conducted yielding a subset of initiatives that show
promise in terms of their potential to scale, to identify those that could benefit most from
partnership to deliver on their promise.

The research began in collaboration between The Future Society, the OECD, and GPAI by
applying the OECD Framework for the Classification of Al Systems to classify Al initiatives
based on their technical characteristics. Those associated with the development of Al
systems created or repurposed to aid in COVID-19 response were invited to complete a
survey shared in a public announcement. A total of 66 initiatives were identified via TFS
desktop research and survey responses.

The Immediate Response Project Steering Group then worked with TFS to build upon the
OECD Framework to develop a more impact-focused set of criteria, including:

Background of the initiative (name, sources, objective/purpose)

Origin (including organization(s), locality)

Categorization (type of approach / Al method)

Scope (domain, target users/operators and beneficiaries, geographic coverage)
Data (description of the dataset in use including demographics, target population,
size, collection timeframe, any public access links)

The 66 Al systems have been classified using this framework to create the Living
Repository. This is being shared in an open ‘work-in-progress’ format in reflection of the
immediate needs of the pandemic for those that may find it useful as a resource.

Using these classifications, the Immediate Response Project Steering Group conducted
assessments of initiatives’ intrinsic scalability and their potential to mitigate the current and
future pandemics, to narrow the 66 identified initiatives into a shortlist of 26, a subset of
which have been selected as candidates for potential partnerships with the Al & Pandemic
Response Subgroup and GPAI more widely.

In this document, we are pleased to share summaries of the 26 initiatives. They include Al
and data systems that have been developed to:

e compare how different combinations of border control strategies, home isolation,
and testing at varying levels of vaccine coverage affect the risk of an infected
traveler causing a community outbreak of COVID-19;
predict the distances and angles between pairs of proteins’ amino acid residues;
support the screening phase of literature reviews and topic meta-analyses;
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e determine the effectiveness of non-pharmaceutical interventions (NPIs) on
COVID-19

e facilitate decision-making processes by deriving insights from a large array of near
real-time data from various official and unofficial sources;

e aid policymakers’ and health officials’ decision-making across various topics
related to the COVID-19 pandemic;

e identify individuals who are at the greatest risk of heightened vulnerability to
COVID-19, based on individuals’ pre-existing medical conditions;

e help policymakers simulate pandemic spread dynamics for different government
control measures;
allow users to navigate a large corpus of coronavirus-related literature;
automatically check statistical facts about the coronavirus;
provide users with personalized daily COVID-19 “risk scores” associated with
regular activities;

e aggregate forecast data on key COVID-19 outcomes, such as cases, deaths, and
hospital admissions;

e organize both structured and unstructured COVID-19 data into a knowledge graph
that can be navigated and queried to retrieve information;

e illustrate how the COVID-19 pandemic could develop under different national
guidelines throughout the pandemic;

e provide a country-level risk modeling framework intended to assist the government
and individuals in making informed decisions;

e conduct an automatic, efficient, and detailed evaluation of the severity of
COVID-19 in chest CT scans;

e automatically determine the most effective non-pharmaceutical intervention (NPI)
strategies to contain the spread of COVID-19;
quickly and accurately detect the presence of COVID-19 in thoracic CT scans;
model the spread of COVID-19 based on the prevalence of mask-wearing in a
population;
analyze non-contrast thorax CT scans for COVID-19 pathologies;
identify, track, and analyze events associated with COVID-19 via mentions on
online news articles and social media posts;
facilitate desktop research on topics related to COVID-19;
query relationships between biomedical concepts, based on associations derived
between terms in unstructured biomedical literature and experimental data;

e aggregate and clean various sources of US pandemic-related raw data to produce
COVID-19 “indicators” for “nowcasting” (situational awareness) and short-term
forecasting;

e allow users to view current occupancy rates of hospitals across the US and
recommendations for intra-state patient transfers based on current occupancy
rates.

We intend that the analysis will be used to help inform the Immediate Response Project
Steering Group’s partnerships approach in 2022, but should also provide a useful tool and
model for the critical evaluation of Al initiatives within the ongoing and in future pandemics.

Al-POWERED IMMEDIATE RESPONSE TO PANDEMICS:



a
14

Researchers tried to make these summaries comprehensive and accurate with publicly
available information, but we acknowledge that they may contain errors or details that are
outdated. Drafts of each summary were sent via email to the developers of each initiative
for their review and approval; the summaries that have been reviewed and approved are
marked with an asterisk (*) in the Table of Contents. If you are a developer of one of these
initiatives and would like to correct, update, or add information, please contact the
International Centre of Expertise in Montreal on Artificial Intelligence (“Centre d’expertise
international de Montréal en intelligence artificielle"; CEIMIA) at info@ceimia.org.

Al-POWERED IMMEDIATE RESPONSE TO PANDEMICS: SUMMARIES OF TOP INITIATIVES 6



a
v

Summaries

A statistical model to predict the risk of COVID-19 infection from international
arrivals to New Zealand

In early November 2021, researchers from the Department of Physics at the University of
Auckland, the School of Mathematics and Statistics at the University of Canterbury, Te
Pdnaha Matatini, and Manaaki Whenua Landcare Research—all based in New
Zealand—released a non-peer-reviewed publication, Effect of vaccination, border testing,
and quarantine requirements on the risk of COVID-19 in New Zealand: a modeling study
[1]. In this study, funded by the New Zealand Ministry of Business, Innovation and
Employment COVID-19 Programme, the Department of the Prime Minister and Cabinet,
and Te Punaha Matatini, the researchers employ a stochastic branching process model to
compare how different combinations of border control strategies, home isolation, and
testing at varying levels of vaccine coverage affect the risk of an infected traveler causing a
community outbreak of COVID-19 in New Zealand. The researchers aim to provide an
evidentiary basis for policy strategies that allow for the safe adjustment of travel restrictions
by comparing risk reduction from available policy options. Researchers involved in the
development of the model were reported to have advised Prime Minister Jacinda Ardern
throughout the COVID-19 pandemic [2], so while it is not explicitly stated in their paper, the
model may have been used to advise government decisions in New Zealand.

The model incorporates a set of assumptions about New Zealand’s vaccination program,
the extent to which vaccination prevents infection, the transmission dynamics of
SARS-CoV-2, as well as the accuracy of testing and contact tracing statistics. The values
for these parameters are obtained from large span of scientific papers whose findings
correspond to the context of this study [1]. For example, the reproduction number (R,) used
in this model represented the values associated with the SARS-CoV-2 Delta variant—the
most common variant circulating at the time of publication. For the mean generation time
and incubation period of the SARS-CoV-2 Delta variant, the researchers acknowledge
uncertainties in the available literature and addressed this by performing their own
sensitivity analysis with a shorter generation time and incubation period. The model was run
on structured data pertaining to the number of cases detected in past arrivals to New
Zealand, the reported incidence of COVID-19 in the country of origin from these travelers,
and the previous and estimated future numbers of travelers. Sources for these statistics
include the New Zealand Ministry of Health through Environmental Science Research New
Zealand’s EpiSurv database [3], the New Zealand Ministry of Health’'s COVID-19 2021
Vaccine dataset [4], and New Zealand FluTracking data [5]. These data are all openly
accessible, but the aggregated dataset used in this study is not publicly available.

The model itself is a mixed-effects time series model that couples a stochastic
age-structured model for the transmission of SARS-CoV-2 virus through a
partially-vaccinated population with a simple statistical model for testing international
travelers (the probability of testing positive as a function of time since exposure), to
generate simulations where international travelers seed putative community transmission
events under given sets of interventions [1]. This was based on a model developed by
Steyn et al. [6] but with a policy-oriented application intended to assist New Zealand’s
government in gradually relaxing border controls as different stages in the nation’s
vaccination program are reached. Interventions investigated include vaccination
requirements, combinations of pre-departure testing and post-arrival symptom
screening/testing using either rapid antigen or PCR tests, post-arrival self-isolation, and
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different vaccination rates in the population. In their paper, the researchers use the model to
run 100,000 simulations for each combination of interventions, where each is initialized with
one infected traveler to determine the transmission potential of the infected traveler and a
list of resulting infections in the community [1]. The study highlights three primary outputs
from the model that are relevant to decision-makers: 1) the transmission potential of
infected travelers under the interventions provided relative to the absence of interventions;
2) the proportion of simulations in which an infected traveler causes transmission in the
community, causes community transmission that is never detected, causes transmission
that reaches five infections and causes an outbreak (defined in the paper as fifty or more
infections); and 3) the number of travelers who would be expected to cause an outbreak (as
defined above).

As of January 7", 2022, this research remains confined to an article preprint (not yet
formally peer reviewed), and the model itself is not publicly accessible. Because the use of
this model is currently constrained to this study about COVID-19 transmission in New
Zealand, data used to run the model has primarily come from public data about COVID-19
cases in and coming to New Zealand. Furthermore, the researchers note that parameters
incorporated into the model are themselves specific to the context of New Zealand. For
example, some assumptions about transmission dynamics have been catered to
populations “that have not yet experienced large-scale epidemics”[1], like New Zealand and
Australia. Thus, to adapt this model for other localities, some of these values would need to
be tuned to reflect any given area’s characteristics. In general, for the model to be used in
the future, some parameters would need continuous updating to match developing literature
about COVID-19, especially as new variants emerge, affecting not only inputs for the
transmission dynamics of the virus but also infection rates in different geographical
contexts. If appropriately adapted to the specificities of different localities and their
conditions at a given time, the model could be useful for policymakers weighing decisions
about travel policies, as it allows them to compare relative risk reductions provided by
different combinations of mitigation strategies at different levels of vaccine coverage.

More information can be found in the Living Repository.

Al-POWERED IMMEDIATE RESPONSE TO PANDEMICS:
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AlphaFold*

AlphaFold is a deep learning model trained to make accurate predictions of the shapes of
proteins [7]. AlphaFold is a product of DeepMind, an artificial intelligence research
laboratory based in the United Kingdom. In March 2020, AlphaFold’s developers shared the
predicted structures of six under-studied proteins associated with SARS-CoV-2—created
with AlphaFold—with the scientific community.

In their blog post announcing the release of COVID-19-related protein structure predictions,
DeepMind researchers shared their desire to contribute to the scientific community’s
interrogation of the functions of viruses and for their model to serve as a hypothesis
generation platform for future experimental work in developing therapeutics [8].

Since its first announcement in 2018, the AlphaFold model has gone through numerous
stages of development. When announcing the release of the six SARS-CoV-2-associated
protein structure predictions, DeepMind referred to their model entered in the 13th biennial
Critical Assessment of Protein Structure Prediction (CASP13), dubbed “AlphaFold v1.0” [8].
This version of AlphaFold was trained on publicly-available data consisting of approximately
170,000 protein structures from the professionally-curated Research Collaboratory for
Structural Bioinformatics Protein Data Bank (RCSB PDB) [9] and large, open-access
databases of protein sequences derived from genome sequencing projects, such as
UniProt [10] The sequences of proteins associated with SARS-CoV-2 were also obtained
from UniProt.

AlphaFold v1.0’'s model consists of two stages: (1) a two-dimensional dilated convolutional
residual network that takes an amino acid sequence and, using training data, outputs the
prediction of distance and torsion between amino acid residues; and (2) a differentiable
model that performs gradient descent using the output of the first stage to optimize the
3-dimensional shape of a protein towards its lowest energy potential (in other words,
closest to equilibrium) [7].

Following the release of the structure predictions associated with SARS-CoV-2 in March
2020, DeepMind submitted a validated, redesigned version of AlphaFold (“AlphaFold v2.0”)
to be assessed at CASP14. This iteration replaced the convolutional neural network in the
prior model with a transformer-based architecture—the “Evoformer’—which treats the
prediction of protein structures as a graph inference problem in 3D space, processing
inputs through repeated layers of a neural network block to produce an array that
represents the inputs in a lower dimension. This new model had the best performance by a
significant margin at CASP14 held in 2020 [11]. AlphaFold v2.0 was described by its
developers in the CASP conference in November 2020 and published in July 2021 [11].

Upon the publication of the paper describing AlphaFold v2.0’s architecture, Deepmind also
openly released its source code, trained weights, and an inference script to the research
community [12]. It also partnered with European Molecular Biology Laboratory’s European
Bioinformatics Institute to release the AlphaFold Protein Structure Database, which includes
structural predictions of all of the 20,000 proteins in the human proteome, as well as those
from other biologically significant organisms, such as E. coli, yeast, drosophila, and mice.

The developers identified limitations in predicting parts of the human proteome, such as
proteins that are unable to be accurately modeled with single-chain structure prediction,
and must be modeled in complex or in the cellular milieu. They also note a bias towards the
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human proteome for health and medicinal research, while other biologically, medically, or
economically important organisms are underrepresented.

The open-source nature of this initiative’s source code and the model’s noteworthy
accuracy in predicting protein structures suggests a high potential for impact in pandemic
response, as protein structure prediction is critical for understanding viral biology and
pharmaceutical design.

*This summary has been reviewed and approved by the initiative’s developers. More
information can be found in the Living Repository.
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ASReview against COVID-19*

ASReview is a versatile machine learning tool designed to support the screening phase of
literature reviews and topic meta-analyses. Given a database with records to be screened
and a minimal set of labels, the system orders the other records based on its assessment of
their relevance [13]. Then, the active learning cycle starts: the most relevant record is
shown to the user, who provides a label that is then used to train a new model, and the next
most likely relevant record is shown to the user. The ASReview framework employs active
learning, supporting multiple classifiers, feature extraction techniques, and query and
balance (to compensate for underrepresented data [14]) strategies. The initiative was
developed at the University of Utrecht, Netherlands, and was originally funded by the
Innovation Fund for IT in Research Projects at Utrecht University.

In response to the COVID-19 pandemic, in June 2020, an extension for ASReview was
developed for screening COVID-19-related literature [15]. The COVID-19 extension bridges
access to two sets of data: 1) the CORD-19 database [16] maintained by the Allen Institute
for Al, and, 2) a collection of preprints related to COVID-19 sourced from multiple preprint
servers, maintained by researchers at Leibniz Information Centre for Economics and
Utrecht University [17]. The CORD-19 database, which is openly accessible, contains full
texts and metadata of over 800,000 coronavirus-related research papers published
between 1996 and today [18]. It is updated on a weekly basis and is openly accessible. The
second database, which is also openly accessible, contains over 66,000 COVID-19-related
preprints published since January 2020 and is updated on a monthly basis.

To use the tool, the user initially chooses the database to use—e.g., meta-data containing
tittes and abstracts of scientific papers—and specifies the active learning model containing
a classifier, a feature extraction method, a query strategy, and a balance strategy [19]. The
toolbox includes multiple built-in options for each of the above-mentioned elements, or
users can add their own models. To start the active learning cycle, the user chooses a set
of publications that are relevant and irrelevant to their research question (the model already
works with one relevant and one irrelevant record). Next, the system selects the most likely
relevant record, which the user is asked to label as relevant or irrelevant. Using this label,
the model re-trains and continues the cycle by selecting the next record for the user to
label. This is repeated until a user-specified criterion is satisfied. Finally, the model returns a
list containing labeled and unlabeled entries, the unlabeled ones sorted according to the
model’s assessment of their relevance. A technical log file is available, in which every
decision of the model is logged, including all probabilities plus labeling decisions for every
record in the data and for each iteration of the model—making the procedure both
transparent and reproducible.

The tool can also be used for literature reviews on other topics. In this case, the user
creates the database and imports it into the software. The remainder of the active learning
cycle works as previously described.

In a 2021 Nature Machine Intelligence publication, the developers of ASReview performed
four simulation studies to test the model’s performance on systematic reviews conducted
between 2012 and 2020 [20]. These each contained between 2,500 and 8,900 publications
and inclusion rates between 0.66-4.84%. The active learning cycle involved presenting one
random relevant and one irrelevant record to the user. After sorting the remaining records
according to relevance, the system is evaluated based on the following set of performance
metrics: the work saved oversampling at a given level X (“WSS@X”), which measures the
reduction of screening effort at the cost of missing (1-X)% of relevant items; and the fraction
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of relevant records (“RRF10”) after screening the top 10% of the sorted records. A
randomly sorted list of publications serves as a control. Their results demonstrated the
utility of the tool: when screening studies according to the sorted list, on average 95% of
relevant studies were found after screening 8-33% of the studies. Moreover, the RRF10
ranged between 70 and 100%.

The ASReview software and the COVID-19 extension are both freely accessible with an
Apache 2.0 license [15], [21]. The software appears to be updated at least quarterly, and
the underlying data are updated on a weekly-to-monthly basis. As ASReview returns a list
of publications ordered according to their relevance according to the model, it is more
interpretable than comparable systems that simply assign the labels “relevant” and
“irrelevant;” however, the choices made by the underlying classifiers may be difficult to
interpret (after participating in the active learning, the user only sees an ordered list as an
output, according to the predictions by the model based on the labeling decisions of the
screener). This limitation notwithstanding, the tool constitutes a potentially impactful
approach to accelerating scientific research, particularly in COVID-19-related research.

*This summary has been reviewed and approved by the initiative’s developers. More
information can be found in the Living Repository.
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Bayesian hierarchical semimechanistic model*

This initiative developed a Bayesian hierarchical semimechanistic model to determine the
effectiveness of non-pharmaceutical interventions (NPIs) on COVID-19 transmission [22].
The initiative was developed by researchers at the University of Oxford, Australian National
University, the Quantified Uncertainty Research Institute, Harvard University, the University
of Bristol, the University of Manchester, the London School of Hygiene and Tropical
Medicine, the London School of Economics and Political Science, the University of
Cambridge, Tufts University, and Imperial College London. The initiative is presented in an
academic paper published in Science in February 2021 [22].

The rationale behind this initiative was to provide an alternative to simulation studies, which
tend to make strong assumptions that are relatively difficult to validate, by developing a
data-driven, cross-country model that compares national interventions to the subsequent
numbers of cases or deaths within those respective regions.

NPI data were collected across 41 countries from January 22nd to May 30th, 2020. To
mitigate errors, all NPI data were entered independently by two of the authors, using
primary sources, and then manually compared with two public datasets: the Epidemic
Forecasting Global NPI [23] and the Oxford COVID-19 Government Response Tracker [24].
Data on confirmed COVID-19 cases and deaths were obtained from the COVID-19 Data
Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins
University [25]. To prevent bias, data were pre-processed by neglecting COVID-19 case
numbers before a country had reached 100 cases, and fatality numbers before 10 deaths
[22].

The model presented in this paper was built upon the semimechanistic Bayesian
hierarchical model developed by Flaxman et al [26], which estimated the effects of NPIs on
COVID-19 transmission in Europe. Similar to Flaxman’s approach, this model used
COVID-19 case and death data to make a ‘backward’ inference of the number of new cases
for each country, which was then used to infer daily reproduction numbers [22]. The
reproduction number and the occurrence of NPIs were then used to estimate NPI effects.
To account for cross-country variations in effectiveness, reporting, and fatality rates, as well
as uncertainty in the generation interval and delay distributions, researchers utilized a
Markov chain Monte Carlo (MCMC) sampling algorithm [27] to infer posterior distributions of
each NPI’s effectiveness.

The researchers found that NPIs demonstrated highly consistent trends across countries
[22]. For instance, closing both schools and universities was consistently highly effective at
reducing COVID-19 transmission, as was banning gatherings of 10 people or fewer,
whereas targeted closures of face-to-face businesses with a high risk of infection, such as
restaurants, bars, and nightclubs, had a small-to-moderate effect. They furthermore found
that when most NPIs were already in place, stay-at-home orders had only a small additional
effect; thus, by using effective interventions, some countries could effectively control
COVID-19 spread while avoiding stay-at-home orders.

The researchers point out numerous limitations of their approach, such as an inability to
factor in country demographics, regional differences in interpretations or implementations of
NPIs, and a lack of data on some NPIs not captured in this study, which may restrict the
feasibility of scaling up the tool [22]. Some of these limitations may resolve with time,
however, if NPls were to become more standardized across larger geographies, and as
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more COVID-19 case and death data becomes available before and after the
implementation of various NPlIs.

A more recent study by the same team focused on Europe's second wave shows that
business closures, educational institution closures, and gathering bans had smaller effects
on reducing transmission compared with the first wave, likely due to organizational safety
measures and individual protective behaviors which made various areas of public life safer
[28].

*This summary has been reviewed and approved by the initiative’s developers. More
information can be found in the Living Repository.
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BlueDot

BlueDot is a software as a service (SaaS) designed to facilitate decision-making processes
by deriving insights from a large array of near real-time data sourced from various official
and unofficial sources [29]. The BlueDot platform’s algorithm aggregates hundreds of
datasets and deploys statistical models to detect anomalies, such as potential disease
outbreaks, and predict how and where diseases might spread. BlueDot is a successor to
BioDiaspora, a scientific research program studying how the world’s population is
connected through commercial air travel, launched in 2008 by Dr. Kamran Khan, a
physician and infectious diseases specialist [30]. BioDiaspora received its first significant
capital financing from Horizon Ventures in 2014 and was renamed BlueDot. In 2018,
BlueDot launched its early warning system, Insights. Today, BlueDot is maintained by a
team of more than 80 employees with expertise in health science and data analytics [30].

The BlueDot platform offers two core components: Insights, which sends clients
near-real-time infectious disease alerts [31]; and Explorer, a cloud-based GIS platform that
integrates diverse datasets, including air travel and disease surveillance data [32]. During
the COVID-19 pandemic, within Insights, BlueDot has offered two products called “COVID
Data Suite,” for the “latest intelligence about COVID-19, including sub-national data and
epidemic curves,” and “COVID Focus Reports,” which “deliver curated research on
COVID-19 that examines where the pandemic is heading” [33].

Every fifteen minutes, an algorithm pulls structured health data, such as official data from
the Center for Disease Control or the World Health Organization, as well as unstructured
data, including worldwide movements of commercial flight travelers, human, animal and
insect population data, and climate data from satellites. and local information from
journalists and healthcare workers [34]. In total, approximately 100,000 online articles are
identified each day, spanning approximately 65 languages and over 150 diseases and
syndromes around the world. The datasets produced are not publicly accessible.

BlueDot’s specialists have reportedly developed a taxonomy so that relevant keywords
could be scanned efficiently, and then machine learning and natural language processing
can be applied to train the system and automatically classify, so that only a handful of cases
have to be flagged for human experts to analyze [34]. Upon detecting anomalies in data,
such as an accumulative occurrence of unexplained symptoms, users are provided an alert
of these warning signs via the Insights feature [33]. Users are able to track in near real-time
disease spread, hospitalization as well predictions on the interactive dashboard provided by
the Explorer feature. No further information pertaining to the data, model, training, nor
testing has been disclosed.

The early-warning system has proven effective in various disease outbreaks, including the
ongoing COVID-19 pandemic. On December 31%, 2019, anomalous reports of undiagnosed
pneumonia in Wuhan, China were detected on the Insights feature. Two hours after the risk
detection, an alert was sent to BlueDot customers [5]. Based on air travel data such as from
global airline ticketing, the Insights feature identified 20 cities that might be the first to be
affected by the outbreak. Of these, 12 were later found to be among the first cities that
reported early cases [4]. These alerts preceded both a warning sent by the US Centers for
Disease Control on January 6th, 2020, and the World Health Organization on January 9th,
2020 [35]. By the end of January 2020, BlueDot developers had published two separate
articles in the Journal of Travel Medicine—one on January 10th, 2020 [36] and one on
January 27th, 2020 [37]—warning of the global spread of this “pneumonia of unknown
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aetiology” based on commercial flight data. The BlueDot system has demonstrated similarly
prescient forecasts of earlier viruses, including Ebola in 2014 [38] and Zika in 2016 [39].

BlueDot offers all of the aforementioned services to licensed clients; website advertising is
tailored to those in the business, government, and healthcare sectors [30]. In addition to the
advantages that BlueDot has conferred in terms of COVID-19 spread forecasting, the
founder emphasizes the system's potential to track future anomalies that could be a sign of
the next high-risk disease—potentially breaking out before the COVID-19 pandemic has
subsided [40]. However, lack of public access to the platform, data, and models not only
make it difficult to assess BlueDot’s potential scalability and impact, but is itself a barrier to
the platform’s scalability and impact.

More information can be found in the Living Repository.
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C-19 Index*

The C-19 Index is an open-source, Al-based predictive model designed to identify
individuals who are at the greatest risk of heightened vulnerability to COVID-19, based on
individuals’ pre-existing medical conditions [41]. The C-19 Index was developed by
researchers at ClosedLoop.ai, a private healthcare software company, and one researcher
affiliated at Healthfirst, a New York-based health insurance company. A research article
describing their models was uploaded to medRxiv in March 2020 [42] and was published in
the Journal of Medical Atrtificial Intelligence in December of 2020 [41].

In their research article, the researchers note that identifying who is most vulnerable to
COVID-19 complications or death is not straightforward; however, patterns that were
emerging in data from Wuhan and the US (in early 2020) suggested that the risk of death
increased with age, for those who have diabetes, heart disease, blood clotting problems, or
have shown signs of sepsis. Researchers believed that building predictive models based on
these known risks could be useful for outreach campaigns targeted to those most at risk of
severe COVID-19 complications [41].

Researchers used data from two different datasets to train their models: the Center for
Medicare & Medicaid Services Limited Data Set for 2015 and 2016 [43], and a medical
claims dataset containing 2.5 million Healthfirst insurance beneficiaries. Each dataset
represented different US demographics: the former contained data for those over the age of
65 or disabled who receive Medicare, while the latter contained data from overall healthier
adults enrolled in Medicaid. Cohorts were created from each data set, and then the
resulting cohorts were combined, such that the combined cohort had an age profile
consistent with the overall US population [41].

Three different models, which output a person’s “C-19 Index” score—the percentile risk of
near-term severe complications from an upper respiratory infection, were then trained on
the combined cohort’s data: (1) a “survey risk factors” logistic regression model that outputs
a person’s percentile risk score based on responses to a web-based survey; (2) a
“diagnosis history model,” which train gradient-boosted trees in a time-delayed fashion,
allowing the model to use current claims data by simulating the 3-month delay in claims
processing that usually occurs in practical settings; and (3) an “expanded feature model,” a
model built within ClosedLoop—a software system for creating machine learning
models—that uses additional engineered features from peer-reviewed studies (not
disclosed in their publication). The key differences between each model are the number of
features each employs, and thus, their ease of implementation.

The validation dataset contained 14,000 COVID-19 cases in New York City from February
2020 until mid-May 2020. The logistic regression used the fewest features and delivered
the lowest performance, with an AUROC (Area Under the Receiver Operating
Characteristics—a measurement of a model’s ability to distinguish between classes) of
.731. In comparison, both the diagnosis history model and the expanded features models
obtained AUROCs of .810.

The C-19 Index has already been utilized by at least two healthcare organizations: Medical
Home Network, an lllinois-based accountable care organization [44], and Healthfirst, the
aforementioned New York-based health insurance company. However, the authors note
several limitations of their study which impact the feasibility of using this approach on a
larger scale: no real COVID-19 cases were used in the model’s training, the approach relied
on claims data instead of clinical data, and data excluded those under 18 years of age.
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Therefore, moving forward, possible technical enhancements could be to validate the proxy
outcome and determine their validity based on COVID-19 data, to build models on
COVID-19 vulnerability on COVID-19 data (without having to use other upper respiratory
diseases as proxies), and to test on data of those under 18 years of age.

*This summary has been reviewed and approved by the initiative’s developers. More
information can be found in the Living Repository.
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CAIAC*

CAIAC (Collective and Augmented Intelligence Against COVID-19) is a prototype of a
knowledge management platform developed to aid policymakers’ and health officials’
decision-making across various topics related to the COVID-19 pandemic [45]. The project
was launched in July 2020 as a collaboration between Stability.ai, The Future Society, and
the Stanford Institute for Human-Centered Al (HAI), with support from Patrick J. McGovern
Foundation [46].

The objective of CAIAC is to assist users with decision-making by providing them with the
means to navigate authoritative and up-to-date information with a combination of
information representation and query tools [47]. The prototype was developed with three
initial COVID-19-related use cases in mind: contact tracing, targeting aid towards
marginalized groups, and addressing the “infodemic.” The platform prototype integrates a
number of Al systems into three functionalities: 1) knowledge graphs, in which actors and
initiatives (for each use case) are represented by nodes; 2) informative briefs pertaining to
the key questions identified within each use case; and 3) a query interface that allows users
to search for information within the CAIAC dataset.

CAIAC relies on a combination of structured and unstructured data. Several hundred
documents—academic articles, preprints, publications by public health authorities, and
news media—from each use case were annotated by humans with related expertise (at
least an undergraduate degree in a related field) [47]. Human annotators used software
called Hypothesis [48] to parse COVID-19-related literature and extract key entities, topics,
statistics, and quotations. Using a bespoke Named Entity Recognition (NER) model with
software called Hivemind [49], these thousands of extracted strings were delegated to
humans to assign labels (such as “individual,” “organization,” “quotation,” etc.). Data were
also collected via expert interviews: within each use case, interviews were conducted, with
permission, with 10 domain experts—those highly cited or in positions of authority in
authoritative medical and/or scientific institutions. These interviews were transcribed with
Otter Al [50] and then labeled in a similar manner to the documents above.

These structured data are visualized on three knowledge graphs—one for each use
case—using Kumu software [51]. Informative briefs provide users with a walkthrough of
each graph and key questions (those which had been identified as significant in literature or
in expert interviews) pertaining to each use case. Users are also able to execute search
queries with a chatbot interface, enabled by IBM Watson Discovery [52], which provides
users with excerpts from the data most likely related to their query. The details pertaining to
the Natural Language Processing (NLP) model(s) employed by IBM Watson Discovery are
not publicly available. Work has been ongoing to replace the IBM Watson
Discovery-powered chatbot with a language model capable of reliably accurate Natural
Language Generation (NLG) output in response to COVID-19 related queries. In this
regard, a 6 billion parameter GPT-J (an open-source alternative to GPT-3) language model,
was fine-tuned with the COVID-19 Open Research Dataset (CORD-19) and the
aforementioned data sets [47]. As of January 7th, 2022, the text generated by this model
has not been demonstrated to be reliably accurate and, and as such, an interactive version
is not publicly accessible, but interested parties can access an API with a key available
upon request by developers [53].
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The prototype of CAIAC is publicly accessible [45]. A goal of CAIAC was to explore
methods to systematically collect, structure, and make navigable data in domains where
literature is quickly emerging [47]. The data collection and labeling processes, as described,
are labor-intensive; in order to be scaled across other domains, these tasks could be
replaced by automated named entity recognition (NER) methods. Furthermore, the
development of CAIAC demonstrated that even some of the most powerful language
models, such as GPT-J fine-tuned with COVID-19-related research, are not yet capable of
providing reliably accurate summaries from the large body of disparate data sources.
Indeed, language models (such as OpenAl’'s GPT-3) are only just beginning to demonstrate
the competency to summarize bodies of text from a single source, such as a book [54].
Thus, improvements in information management and NLG methods would likely be
necessary before CAIAC could feasibly be scaled up for other use cases.

*This summary has been reviewed and approved by the initiative’s developers. More
information can be found in the Living Repository.
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Compositional Cyber-Physical Epidemiology of COVID-19

“Compositional Cyber-Physical Epidemiology of COVID-19” is a framework for simulating
the progression of the COVID-19 pandemic based on the enforcement of national
non-pharmaceutical interventions (NPIs) [55]. Using estimates for the effect of NPIs on the
reproduction number (R,) [56], the approach allows policymakers to simulate pandemic
spread dynamics for different government control measures. A paper describing the
framework, by researchers at the Department of Electrical and Software Engineering and
the Faculty of Medical and Health Sciences at the University of Auckland, was uploaded to
medRxiv in May 2020 [57] and was published in Nature Scientific Reports in November
2020 [55].

For their model, the authors fitted parameters based on COVID-19 case data provided by
the COVID-19 Data Repository [25] (maintained by the Center for Systems Science and
Engineering at Johns Hopkins University) for New Zealand between March and September
2020, and for Italy between February and August 2020. The dataset is openly available,
and the authors have shared the subset of data they worked with on GitHub [58].

In this framework, disease spread dynamics are modeled as a cyber-physical system,
composed of parameterized ordinary differential equations (ODEs), representing the
disease spread, and a discrete controller that changes the parameters of the system,
representing government interventions [55]. The main parameters of the model are the
reproduction number (R;) and transition probabilities between epidemiological states, as
defined in the Susceptible, Exposed, Infectious, or Recovered (SEIR) model. The tool does
not rely on training; instead, its parameters are inferred from data. For New Zealand, Rywas
derived from a formula that takes into account interventions—each with their own
weight—that are employed at every phase of lockdown (0-4). For Italy, which lacks such a
systematic intervention strategy, the authors divided the transmission trajectory (time) into
four phases reflecting the stringency of measures taken by the Italian government in those
periods, and fitted the reproduction value for each of these phases using Least Squares
curve-fitting with the SEIR model. From here, the tool allows the user to specify a set of
control measures that change pandemic dynamics and are switched based on the state of
the system. For example, when a critical threshold of new cases per day or percentage of
occupied intensive care units (ICUs) is reached, more stringent policy measures will be
implemented, which is encoded in the model by a lower reproduction number. Thus, the tool
implements a state machine that automatically switches the parameters of the ODE model
based on the values of the system.

The model’s performance was measured with respect to COVID-19 Data Repository for
Italy between February and August 2020 and for New Zealand between February and
September 2020. To test the model's performance, the authors implemented control
measures that mimic the interventions taken by governments of Italy and New Zealand, in
addition to hypothetical interventions, in order to assess the differences between different
restriction strategies. It was observed that this model accurately captured the course of the
pandemic in New Zealand and lItaly over the amount of time for which data existed
(approximately 170 days). After that point in time, authors examined how different levels of
stringency—reflected in the controlle—would impact future outcomes. These tests
demonstrated that a controller that reflects New Zealand'’s tiered lockdown strategy results
in better economic outcomes than a “simple” controller (e.g. locking down entirely until
infections reach zero or vaccines are available). It also demonstrated that a tiered strategy
performs better than an oscillating strategy—alternating between no lockdown and
complete lockdown based on active infections.
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This framework is openly accessible on the developers’ GitHub page and was last updated
in September 2020 [58]. The framework as presented relies heavily on accurate parameter
estimates, such as the reproduction number in the SEIR model. The authors note that due
to regional differences in implementation, population density, mobility, spatial heterogeneity,
economic factors, and cultural characteristics, it can be difficult to reliably estimate the
effects of government interventions on this figure [55], [59]. However, they also point out
that the framework need not be limited to the SEIR model—it could be extended to other
continuous models that can be captured through a series of ODEs, such as those
demonstrated by CovidSIM [60], SIDARTHE [61], or microscale modeling. Thus, for any
particular geography, research would be required to determine how this approach could be
best utilized.

More information can be found in the Living Repository.
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CoronaCentral

CoronaCentral is a dashboard that allows users to navigate a large corpus of
coronavirus-related literature for SARS-CoV-2, MERS-CoV, and SARS-CoV, where articles
can be accessed and searched using predefined categories and terms. The portal was
developed by Jake Lever and Russ B. Altman, based at the Department of Bioengineering
at Stanford University, and supported by the Chan Zuckerberg Biohub and a National
Library of Medicine Grant [62]. The earliest commit to the dashboard’s GitHub repository is
June 2020 [63], and the work was published as an article in Proceedings of the National
Academy of Sciences of the United States of America (PNAS) in April 2021 [62].

Articles from the COVID-19 Open Research Dataset (CORD-19) [16] and a selected set of
articles containing relevant coronavirus keywords PubMed are processed on a daily basis
[62]: URLs of the latest CORD-19 dataset is fetched from the dedicated CORD-19 releases
page [18] and metadata CSV files are extracted; PubMed file URLs are fetched from the
FTP listing [64] and the XML files are downloaded then filtered for documents that appear
to be coronavirus-related. Both PubMed and CORD-19 files are combined into a JSON
format. The data are fed through a pipeline that cleans the data, removes duplicates,
merges the data, performs categorization, and then uploads data to a MySQL database
[62]. Full details are published on the author’s GitHub [63], and as of January 7", 2022,
CoronaCentral has processed 274,043 articles [65].

To mine the downloaded data for topic, article type, and typical identifier (e.g. author(s),
title, journal, year), a Bidirectional Encoder Representations from Transformers (BERT)
natural language processor was employed as a machine learning model, trained by a
supervised learning approach. An initial 1000 randomly selected articles were manually
evaluated to produce a draft list of topics and article types. This was then adjusted to
provide better coverage, where further topics were added (e.g. long haul, contact tracing)
later in the pandemic. Cross-validation using a 75%/25% training/validation split was used
to evaluate BERT-based document classifiers [66]. Topics and article types were predicted
together using the title and abstract as input: multi-label classifiers were implemented using
ktrain and HuggingFace models [66]. The best BERT model was evaluated on a held-out
test set of 500 articles [67]. Optimal parameters were 32 epochs, a learning rate of 5°, and
a batch size of 8. This had a macro precision of 0.805 and a macro recall of 0.76 [67]. The
macro F1 score, which is based on a balance of precision and recall with 1 being the best
value, was 0.774 [67].

The data are presented through an online dashboard where users are presented with
interactive graphs depicting trends in publications by coronavirus species (SARS-CoV-2,
MERS-CoV, and SARS-CoV) and recent articles that are trending based on altmetric
scores. Other interactive graphs present publications by topic, location, article type, source
(peer-reviewed versus preprint servers), drug (non-vaccine), vaccine, risk factors,
symptoms, genetic variation, and viral lineage [65]. Users can execute a query for articles
or browse by category (e.g. epidemiology, treatment) and subcategory (e.g. contact tracing,
vaccines). The project authors note that topics ranking highest in terms of frequency of
publication (e.g. Clinical Reports ranking highest at over 15,000 articles) are overtaken in
the rankings by altmetric score (e.g. Transmission ranking highest with over 15 articles in
top 100 altmetric score). This suggests that in the context of a dynamic research
environment, such as a pandemic, users may wish to rely on an alternative means by which
to prioritize research, rather than more canonical citation indices [62]. User feedback is
possible via a form on the website, to flag issues and contact the authors, for instance, in
the event of mistaken categorization and missing files.
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Because a large number of articles are added every month (approximately 10,000), it is
reasonably foreseeable that new topics will emerge. The project’s authors note that as the
breadth of coronavirus literature grows, they may need to add new topics as research
focuses shift [62]. Monitoring of trending articles will help identify and verify that topic drift
does not noticeably reduce machine learning quality. Presumably, the model will need
retraining as the pandemic evolves. The project’s GitHub page lists regular updates up until
at least October 2021; formal re-releases of new versions may be necessary as an
assurance of ongoing integrity of the portal.

More information can be found in the Living Repaository.
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CoronaCheck

CoronaCheck is an online tool for automatically checking statistical facts about the
coronavirus based on data in the COVID-19 Data Repository [25] maintained by the Center
for Systems Science and Engineering at Johns Hopkins University [68]. Given a claim
provided by the user, the system assesses the claim’s validity and provides users with an
explanation for how their statement was assessed [69]. This tool is the result of a
collaboration between Professor Paolo Papotti’s lab [70] at EURECOM and Professor
Immanuel Trummer’s lab [71] at Cornell University in March 2020 [68].

CoronaCheck is a COVID-19-oriented, proof-of-concept instantiation of a generalized
system called ‘Scrutinizer,” described in a paper published in Proceedings of the VLDB
Endowment in September 2020 by the same researchers [72]. The CoronaCheck
instantiation involves an algorithm that uses pre-trained language models, in particular,
Facebook’s cross-lingual language model (XLM) [73, p.], with task-specific fine-tuning to
verify single statistical claims submitted by users against authoritative “ground truth”
datasets.

CoronaCheck relies upon three categories of data: those used to fine-tune a language
model, those provided by users (claims to be evaluated), and those that serve as the
source of ground truth. Fine-tuning data consisted of 3 million true claims based on the
ground truth dataset, generated based on a set of template sentences, which were
syntactically varied to produce robust classifiers in a process described on their Github [74].
Usage data, consisting of text inputs provided by the user, are collected to improve
classification in a process described below. Usage data is supplemented by personal data,
which is provided to Google Analytics in accordance with CoronaCheck’s privacy policy
[75]. Ground truth data are obtained from the Center for Systems Science and Engineering
at Johns Hopkins University’s COVID-19 Data Repository, which aggregates statistics on
COVID-19 cases, deaths, and recovery, as well as national, regional, and state-level
population [25]. These data are sourced from the World Health Organization and numerous
Centers of Disease Control among other institutions and have been updated daily since
January 21, 2020 [25].

CoronaCheck processes a user's input claim in four steps: First, the input—a user’s
statistical claim—is mapped to real-valued vectors using pre-trained embedding functions
[68]. Next, the embeddings are passed to classifiers, which match them to a set of dataset
queries. The query results are processed and the results are displayed to the user,
containing an assessment of the claim and explanations of the results. If the classifiers
have low confidence (with respect to a predefined threshold), the system invokes human
fact-checkers by generating questions based on the submitted claims, using the classifiers
and language models. Based on the classifiers’ rankings, the algorithm provides multiple
answer options to the human fact-checkers, who answer the question, thereby updating the
classification result. This way, new training samples are created, which can improve
classifiers’ performance.

The accuracy and efficiency of CoronaCheck were tested in comparison to three other
state-of-the-art query generator solutions—Tapas [76], TabFact [77] AggChecker
[78]—used to translate text claims to database queries. CoronaCheck outperformed all
three in its ability to support its claims and its accuracy of claim verification. Furthermore, it
took less time to train and to compute verifications [72]. Tests were also performed to
assess the amount of time required for domain experts to verify claims with CoronaChecker
versus manual methods (using a search engine), and it was demonstrated that, overall, it
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took experts less than half of the time to verify a claim with the assistance of CoronaCheck
than without it [72].

CoronaCheck is freely accessible on its dedicated page on the EUROCOM site [69], where
a terms of use statement notes that the tool should only be used for educational and
academic research purposes, not for medical guidance. It furthermore notes that it relies
upon publicly-available data from multiple sources that do not always agree. In addition to
English, CoronaCheck can also be used in ltalian, French, German, Spanish, Arabic, and
Traditional Chinese; however, the performance of the tool in these languages has not been
presented. Developers also note that an API is available upon request. The code for
Scrutinizer is accessible on the developers’ GitHub page [74], and its technical
documentation [72] is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

More information can be found in the Living Repository.
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COVI*

COVI is a research project that culminated in the development of an Al-enabled
contact-tracing mobile application. This application aimed to provide users with
personalized daily COVID-19 “risk scores” associated with regular activities (such as taking
public transportation and socializing with friends), using smartphones to monitor proximity
and accumulate relevant statistics. These scores were based on users’ demographic and
health profiles [79]. The project commenced in May 2020, led by researchers at Mila (a
research institute specializing in artificial intelligence), Canada, with affiliations including the
University of Ottawa, Universite de Montreal, The Alan Turing Institute, University of Oxford,
University of Pennsylvania, McGill University, Borden Ladner Gervais LLP, The Decision
Lab, HEC Montreal, Max Planck Institute, Libeo, and the University of Toronto.

The primary objective of the mobile application was to help members of the general public
make informed, risk-reducing decisions in a manner that preserved individual privacy [80].
COVI extends beyond a contact-tracing mobile app by combining contact-tracing
information with other user data (e.g., user demographics, health information, symptoms) to
predict daily personal risk factors for each user. In addition, COVI translates these personal
risk scores into recommendations based on public health guidelines. Finally, collected data
is used to define epidemiological models and intervention simulations, which could then be
shared with public health officials to help them preempt the resurgence of the virus and
inform reopening strategies [80].

COVI was developed to utilize a variety of data from users, all of which would be obtained
by consent. Upon opening the app for the first time, users would be provided with an
overview of how the app works and the privacy implications of sharing data with COVI. It
then would ask for consent for the collection, use, and disclosure of IP-based geolocation
history, random “contact” IDs (generated when a phone is within 2 meters of another phone
with COVI installed), and users’ current risk levels — all necessary for the app to function
optimally [80]. If a user were to start presenting symptoms or be diagnosed with COVID-19,
they could report accordingly. Then, contacts made with that user within the past 14 days
would be notified, and the symptoms/diagnosis would be factored into the computation of
the contacts’ risk scores [80].

COVI also asks for consent for the collection and use of data pertaining to a user’s age,
sex, health conditions, active symptoms, ongoing relevant behavior, coarse geographical
location, and app analytics information; all of these data (except analytics information)
would be fed into the application’s risk assessment function, which would compute locally
on the user’s device [80]. Data remains on a user’s device unless the user opted to allow
COVI Canada to receive encrypted, pseudonymized data packets and heat-map
information (in aggregated form), which would be used by COVI's underlying ML model and
assist in epidemiological research by government-related or research-related third parties
[801].

Once collected, data can be used to train deep learning ML models to predict
contagiousness risks, and to fit an epidemiological model [80]. COVI deploys architectural
scaffolding for deep learning around a Transformer architecture, which draws upon
information pertaining to demographics, behaviors, health conditions, symptoms, and
contact with other users [81] to dynamically refine the ML model. In addition, the data
shared by the app users also enables AgentSim, an agent-based simulator that offers
flexibility in designing contact-tracing and epidemiological simulations, to identify new
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patterns and specific parameters (such as distance, sex, and age) to model how the virus
spreads [82].

Mila was aiming for COVI to be endorsed for use by the Canadian government, in early
June of 2020. Despite putting forward a demonstrated effort towards building a
“privacy-conscious app” [79] and fostering public trust by explaining the rationale behind
their app design decisions in their white paper and in numerous public appearances
(newspapers, television and radio), the Canadian government decided to endorse a
different application that collected less personal data, citing privacy concerns by provincial
and territorial leaders [83].

COVI's code and documentation remain accessible on Mila’s website (hosted on GitHub
[81] and arXiv [80]) as open-source, with a non-exclusive and royalty-free license, “should
[others] wish to deploy an Al-enabled health app inspired by our approach” [79]. The
open-access nature, human-centric privacy protocols, and consensual use of encrypted,
pseudonymized user data suggest that this tool has a high potential to scale to other
geographies.

*This summary has been reviewed and approved by the initiative’s developers. More
information can be found in the Living Repository.
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COVID-19 Forecast Hub

The COVID-19 Forecast Hub is a central repository for forecast data on key COVID-19
outcomes, such as cases, deaths, and hospital admissions across the United States. It also
aggregates forecast data from a large community of academic and corporate prediction
modeling teams to build short-term (i.e., one- to four-week) ensemble forecasts, which have
been demonstrated to outperform individual forecasts [84], [85], and can be explored on an
interactive visualization hosted on its site [86]. The COVID-19 Forecast Hub was created by
the Reich Lab of the University of Massachusetts Amherst in March 2020 and has been
maintained since then by researchers at the University of Massachusetts Amherst, lowa
State University, Carnegie Mellon University, as well as several international research
groups [87]. Research has been funded by the U.S. Centers for Disease Control and
Prevention and the US National Institutes of Health [87], with some contributors receiving
additional funding from public health, academic, or philanthropic institutions [88]. Notably,
the U.S. Centers for Disease Control and Prevention rely on forecasts from the COVID-19
Forecast Hub for their official communications on the COVID-19 outbreak’s trajectory [85],
[89].

The forecast data collected by the COVID-19 Forecast Hub includes daily and weekly
deaths, hospitalizations, and incident cases from all 50 US States, Washington DC, and the
4 territories, as well as aggregated values at the national level, submitted by 82
independent modeling teams (as of January 7", 2022) [85]. In developing forecasts, the
Reich Lab utilizes U.S. COVID-19 death, hospitalization, and incident case data reported by
the Center for Systems Science and Engineering at Johns Hopkins [90] to develop their
forecasts [85], but other modeling teams may rely on other sources for statistics. Forecast
data are organized by date, target horizon/end date, location, and type of prediction (point
vs. quantile forecast) [85]. The Reich Lab has made these forecast data freely available on
Github [91] and a Zoltar API [92]. Additionally, the researchers developed numerous R
packages [93], [94] to facilitate the retrieval of forecasts for analysis.

The COVID-19 Forecast Hub uses an ensemble model incorporating forecasts of key
COVID-19 outcomes from multiple different models into a single, combined ensemble
forecast [95]. Models eligible for inclusion into the ensemble model were built using a wide
range of approaches (statistical, machine learning), and were submitted as point predictions
and/or quantile predictions over four-week horizons [85], [88]. Point predictions refer to the
single best “prediction” with no uncertainty [88], whereas quantile predictions store
predictive distributions, i.e., predictive medians and quantiles [96]. The ensemble is a
“‘median” forecast, meaning that it takes into account all component forecasts equally, as
opposed to more “sophisticated” ensemble methods, such as using trained ensemble
datasets optimized with weighted interval scores. The ensemble forecasts, as well as all of
the forecasts that comprise it, can be explored on an interactive visualization hosted on the
COVID-19 Forecast Hub website [86].

To evaluate the performance of their ensemble model, researchers compared the
predictions of their ensemble model to 23 individual models that comprised the ensemble
(within the testing time frame) to “ground truth” statistics provided by the Center for
Systems Science and Engineering at Johns Hopkins [85], [90]. This testing revealed that
the ensemble model consistently outperformed the individual models that comprised it [85].
Further testing also revealed the median ensemble method was more consistently accurate
than weighted ensemble methods, leading the team to rely on the former [97].
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As of January 7", 2022, the COVID-19 Forecast Hub has collected over 100 million rows of
forecast data and continues to collect more [1]. An advantage of the COVID-19 Forecast
Hub’s ensemble forecast approach is the relative ease of transferring such an approach to
new geographical contexts: in areas where accurate COVID-19 outcome data exist and
more than one ensembling team is producing COVID-19 forecasts, ensemble models may
be constructed. In fact, this ensemble method can, and has, been adapted in other
contexts, for example, the European Covid-19 Forecast Hub [98] and the German and
Polish COVID-19 ForecastHub [99].

More information can be found in the Living Repaository.
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COVID-19 Hospital Capacity Management

COVID-19 Hospital Capacity Management is a publicly-accessible online dashboard that
allows users to view current occupancy rates of hospitals across the US and
recommendations for intra-state patient transfers based on current occupancy rates. It also
provides an interactive tool to modify model parameters (eg. patient type, transfer budget,
transfer distance threshold) to obtain more customized recommendations within any state
or hospital system within the US [100]. The tool was developed by a team from Johns
Hopkins Center for Systems Science and Engineering and Malone Center for Engineering
in Healthcare and is affiliated with the Center for Data Science in Emergency Medicine and
the Department of Civil and Systems Engineering at Johns Hopkins University [100]. The
initiative was first publicly announced on October 27, 2020 [101], and the team’s first
related academic preprint was uploaded to arXiv on November 6, 2020 [102].

In their preprint, the developers state that the motivation behind their effort was to minimize
resource shortages, which would, in turn, improve the overall quality of patient care and
prevent early discharges and cancellations of elective surgeries [102]. They note a few
instances of patient transfers occurring ad-hoc in the COVID-19 pandemic, but remark that
treating this issue at a more protracted, system-level—across hospitals, counties, and
states—uwill spur more efficient resource use. They also recognize the alternative approach
of hospitals individually and reactively responding by creating surge capacity, but point to
studies suggesting that such an approach can lead to a reduced quality of care compared
to hospitals working in coordination to make use of existing resources.

For data on past hospital occupancy and COVID-19 hospitalizations, the dashboard relies
on statistics provided by the US Department of Health and Human Services [103]. To make
future projections, the team uses the US Center for Disease Control’'s county-level
forecasts of COVID-19 cases [89]—an ensemble of models from many forecasting teams,
which the researchers behind COVID-19 Hospital Capacity Management then disaggregate
to the hospital level.

To make recommendations for patient redistribution, the researchers constructed a series of
linear optimization (linear program and mixed-integer linear program) models to solve a
multi-period demand problem: “given a set of nodes and time periods, with nominal demand
(ie. COVID-19 patients) at each node during each period and fixed capacity at each node,
determine the optimal quantity of demand to transfer between each pair of nodes during
each time period” [102]. To better reflect real constraints, they extended the model by
adding several parameters to each node, including the type of patient (ICU vs acute care),
the per-transfer hospital budget, the total transfer budget, percentage of capacity reserved
for COVID-19, transfer distance limits, and lengths of stay, among others. On the COVID-19
Hospital Capacity Management site, the output of the models—recommended intra-state
patient transfers—are presented on dynamic graphics for each US state. In their paper, the
researchers also presented an analogous multi-period method to model critical
redistribution (rather than patient transfers), however, this was not presented on their
dashboard.

The online dashboard remains accessible and up-to-date with data updated weekly, and the
source code publicly accessible on their GitHub repository [104]. Limitations to scaling up
this approach include the accessibility and quality of data pertaining to present hospital
capacity, the aforementioned related parameters, and the accuracy of forecasts of
COVID-19 hospitalizations within a given geographical region.
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COVID-19 Take Control Simulator

COVID-19 Take Control Simulator is an interactive epidemic simulation web application
developed by researchers at Te Plinaha Matatini, led by Professors Alex James, Michael
Plank, and Audrey Lustig, and hosted by the Centre for eResearch at the University of
Auckland in New Zealand. Funded and supported by Te Pinaha Matatini and Manaaki
Whenua Landcare Research, the application was first released and announced on Te
PGnaha Matatini’'s website on April 24", 2020 [105].

Created as an educational tool for public use, the COVID-19 Take Control Simulator was
designed to illustrate how the COVID-19 pandemic could develop under different national
guidelines throughout the pandemic [106]. These guidelines ranged from the most lenient
precautions taken at Alert Level 1 to the most stringent social distancing measures
enforced at Alert Level 4 [107]. Developers intended that users would understand that “the
power to control COVID-19 is in each of our hands” [106] interacting with the app.

The web application has two interactive pages: the ‘R calculator’ page, in which users can
calculate their reproduction number (Ry) based on the degree to which they observe
physical distancing, maintain personal hygiene, practice contact tracing, self-isolate, as well
as the outside weather; and a ‘Simulator’ page, in which users can compute simulations of
reported cases and COVID-19-infected individuals based on R values in different Alert
Levels and the duration that restrictions are maintained at every Alert Level [106]. These
pages run on data describing 1,214 probable or confirmed cases of COVID-19 in Aotearoa
up to the 7" of April, 2020, publicly available via the Ministry of Health New Zealand [108].

The model for the ‘R calculator’ is described in a paper by the developers [109], in which R,
is a function of the variables described above. The ‘Simulator’ page utilizes a stochastic,
continuous-time branching process model similar to Davies et al. [110] to simulate reported
and infected cases [109]. A set of key assumptions are built into this model, including
values for the reproduction number (R;), the viral incubation period, prevalence of
undetected cases, and hospitalization rate, among others [109]. On the Simulator’s “About”
tab, developers cite a number of their papers demonstrating COVID-19 modeling, but it is
not clear which of these, if any, describe the values for the parameters and distributions for
the model on the Simulator [106].

The COVID-19 Take Control Simulator free public use under a GNU General Public License
v3.0 (GNU GPLv3) [106]. The creators note that the Simulator is intended for research and
educational purposes only and that it should not be used for decision-making. It is feasible
that a simulator of this sort could be developed for other localities; this would require
adapting the model with accurate data, parameters, and distributions to suit the locality in
question. It should also be noted that COVID-19 Take Control Simulator does not appear to
have been updated since 2020. Key developments in the COVID-19 pandemic have
occurred since then, such as the emergence of the SARS-CoV-2 Delta and Omicron
variants, as well as vaccine accessibility. These developments would influence the
parameters used by this model, and such a tool would need to be consistently updated to
reflect the characteristics of the pandemic as it changes over time.

More information can be found in the Living Repository.
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COVIDcast*

COVIDcast is a site that acquires or identifies raw data sources and extracts from them US
COVID-19-related signals (“indicators”), which are intended to inform decision making by a
broad range of users—public health authorities, the healthcare industry, the public and
private sectors, epidemiologists, data journalists, and the general public [111]. COVIDcast
was created by the Delphi Research Group at Carnegie Mellon University—one of the two
US Centers for Disease Control and Prevention’s (CDC) Influenza Forecasting Centers of
Excellence [112]—with support from Amazon, the US CDC, Change Healthcare, the US
Defense Threat Reduction Agency, Facebook, Uptake, Optum, and Google.org [111]. In
addition to data from the aforementioned sources, the group also uses its own indicators to
create forecasting models at the state and county levels. COVIDcast was launched in April
of 2020 and its first academic paper was published on June 25th, 2021 [113].

The Delphi Research Group’s motivation is to develop the theory and practice of epidemic
tracking and forecasting. In doing so, they procure data streams that reflect epidemic (or
pandemic) activity, define relevant indicators, and make them available for public
consumption. They then use these indicators for “nowcasting” (situational awareness) and
short-term forecasting [111].

COVIDcast extracts and shares over one hundred COVID-related indicators, categorized
into “public behavior,” “early indicators,” and “late indicators.” Public behaviors include the
frequency of bar and restaurant visits, extracted from SafeGraph data; people’s
pandemic-related attitudes and behaviors (e.g. mask-wearing and vaccination), obtained
via a COVIDcast-administered survey promoted on Facebook; and frequency of online
searches pertaining to COVID-19 symptoms, extracted from Google data. Early indicators
include COVID-19-related doctor visits provided by partnering health system organizations,
such as Change Healthcare; and COVID-19 symptoms present in individuals or
communities, obtained via the US COVID-19 Trends and Impact Survey (US CTIS) [114].
Late indicators include COVID-19 antigen test positivity rates, extracted from raw data
provided by Quidel; hospital admissions data, extracted from data provided by partnering
health system organizations; and COVID-19 cases and deaths, provided by Johns Hopkins
University and USAFacts. Even though COVIDcast did not launch until April of 2020, they
were able to collect data retrospectively beginning in February of that year, and they
continue to collect and update data on a daily basis.

The Delphi Research Group aggregates and cleans the data, uses them to extract
informative signals, displays some of them on the COVIDcast site through an interactive
dashboard, and makes all of them available via a web-based API. On the dashboard, users
may browse indicators’ daily trends or explore correlations between indicators at the U.S.
state- or county-level. Using their indicators, the Delphi Research Group implemented
quantile auto-regression-based forecasting time series models for deaths at the state and
cases at the county level, and submitted forecasts to the publicly-accessible COVID-19
Forecast Hub [115]. The mortality models were built using population data and COVID-19
case and death counts. The case models submitted were built using population data, case
county, and two early indicators (doctor’s visit rates and self-reported symptom rates) [115].
These models are included in an ensemble model developed in collaboration with the Reich
Lab at the University of Massachusetts, and accessible at the COVID-19 Forecast Hub
[116]. Similar models demonstrate the usefulness of other COVIDcast indicators for case
forecasting [113].
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The COVIDcast dashboard is updated with new data nearly daily, and indicators are
publicly accessible via an API [117]. The Delphi Research Group also tracks, stores, and
makes available (via their API) all revisions made to each data source [118]. Many of which
are revised daily. This is essential for building statistical forecasting models, as these must
be trained on versions of the data available in real time.

As of July 2021, the API was reported to have been accessed by “thousands of users every
day, requesting hundreds of thousands of pieces of information” [119]. COVIDcast’s
indicators have reportedly been used by numerous organizations responding to the
pandemic, including COVID Act Now, COVID Exit Strategy, DeepCOVID, and the Institute
for Health Metrics and Evaluation (IHME). Furthermore, the COVID-19 Forecast Hub’s
multi-group ensemble models, which integrate Delphi Research Group’s forecast models,
serve as the basis of the US CDC’s COVID-19 forecasting communications [111].

In terms of technical scalability, some COVIDcast data sources may be difficult to acquire
for some non-U.S. locations. For instance, indicators that rely on proxy measurements for
behaviors in the U.S.—mobility data collected via smartphone activity, survey data obtained
via surveys on social media sites, and health care data obtained from health system
organizations—may be unsuitable in areas where smartphones are not as widely used,
social media use or literacy are less pervasive, and health care infrastructure is relatively
weak. On the other hand, the statistical methodology for extracting informative indicators for
raw data sources is portable, and Delphi makes all of its algorithms and code
publicly-available [120]. Similarly, Delphi’'s forecasting models do not rely on all of
COVIDcast’s indicators; the state-level autoregressive mortality models, for instance, use
only COVID-19 case counts and death counts as predictors. Such data are readily available
for many locations outside the U.S. from Johns Hopkins University and WHO (as this
reporting is mandated for the 194 WHO member states by the International Health
Regulations of 2005) [121]. Thus, an autoregressive time series model of this type may be
more easily repurposed and tested for other geographies.

*This summary has been reviewed and approved by the initiative’s developers. More
information can be found in the Living Repository.
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CT Pneumonia Analysis

“‘Automated Quantification of CT Patterns Associated with COVID-19 from Chest CT” is a
research paper that proposes a deep learning-based tool for conducting an automatic,
efficient, and detailed evaluation of the severity of COVID-19 in chest CT scans [122]. The
research paper was first uploaded as a preprint to arXiv on April 2nd, 2020 [123], before
being published in the journal Radiology: Artificial Intelligence on July 29th, 2020 [122], and
is presented as a product on the Siemens Healthineers website as CT Pneumonia Analysis
[124]. Researchers involved in this paper are affiliated with Hoépital Foch in France,
Feinstein Institutes for Medical Research in the United States, Siemens Healthineers in
Germany and France, University Hospital Basel in Switzerland, and Vancouver General
Hospital in Canada [122]. All of the authors either have been employed or were partially
supported by Siemens Healthineers at the time of publication [122].

The tool uses deep learning methods to assess regions on CT scans with ground-glass
opacities (tissues presenting increased attenuation) and consolidation (increased densities)
and outputs scores quantifying the severity of infection [122]. Models were trained on a total
of 9,749 chest CTs collected from multiple institutions in the U.S, Europe, and Canada
between 2002 and April 2020, which were de-identified and approved by their respective
ethics committees with waived consent [122]. 200 chest CT volumes were used for
testing—100 of which were control volumes and 100 which were COVID-19-positive [122].
The data are not publicly accessible, but information about demographic distribution is
presented in the associated publication [122].

The proposed tool employs two models—a lobe segmentation model and an abnormality
segmentation model—followed by several mathematical computations to quantify the
severity of abnormalities [122]. The lung and lobe segmentation model is a reinforcement
learning model, ‘Deep Image-to-Image Network’ (DI2IN) [125], that takes as an input chest
CT scans and generates masks that segment the lungs and lobes in 3D. The DI2IN model
was trained on 8,087 CT scans from patients with various diseases, and then fine-tuned on
1,136 CT scans from three groups of patients deemed useful for the abnormality
model—those presenting interstitial lung disease, pneumonia, and COVID-19—to improve
lung segmentation robustness over the infected areas [122]. The abnormality segmentation
model consists of a Dense U-Net, based on Ronneberger et al. [126], which transfers 3D
chest CT volumes to a segmentation mask of the same size. This model was trained on
901 chest CTs and tested on the aforementioned 200 chest CTs [122]. The quantification of
severity is performed by calculating the percentage of opacity (PO), percentage of high
opacity (PHO), lung severity score (LSS), and lung high opacity score (LHOS) from the
abnormality segmentation masks. PO and PHO represent the percentage of the volume of
lung affected by the disease and by severe disease, respectively, and LSS and LHOS
represent the percentage of affected lobe and percentage of high opacity in the lobe,
respectively. LSS is computed to measure the extent of lung involvement across each lobe
and LHOS is computed to measure the extent of abnormalities with severe disease. These
scores can be used by medical practitioners to assess the severity and progression of the
infection and for early detection.

Numerous correlation and regression analyses of the predictions with the “ground truth”
(manual annotations of lesions, lungs, and lobes) demonstrated the abnormalities of
ground-glass opacity and consolidations segmented and quantified had a high correlation to
the ground truth annotations [122]. It was furthermore observed that there were very few

false positives segmented in subjects with no pathologic findings [122]. A XZContingency
test demonstrated that there was no significant difference between ground truth and
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predicted metrics (p-value of <.001) [122]. Furthermore, Pearson correlation coefficients,
measuring the linear correlation between predictions and ground truth, were 0.92 for PO,
0.97 for PHO, 0.91 for LSS, and 0.90 for LHOS [122].

According to the authors of the paper describing this tool, their work was the first system to
evaluate chest CT patterns associated with COVID-19 infections. The tool was awaiting a
patent for commercial use at the time of publication [122], but is now offered as a free
add-on to paid subscribers of Siemens Healthineers’ “syngo.via Frontier” post-processing
research platform [124], [127]. Such a tool could be useful for assessing the severity of
abnormalities in diseases that present COVID-19-like ground-glass opacity and
consolidation. The authors noted, however, that the presence of other abnormalities in or
around the lung, like pleural effusion, may pose a challenge to the algorithm [122]. They
also noted the need for further calibration of the system: while their study evaluated
quantification in COVID-19 and healthy cases, it did not evaluate the system’s capability to
differentiate between COVID-19 and other viral pneumonia or interstitial lung diseases
[122]. Such a test would be necessary for the tool to be deployed for diagnostic purposes.

More information can be found in the Living Repository.
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Evolutionary Surrogate-Assisted Prescription (ESP)*

Evolutionary Surrogate-Assisted Prescription (ESP) is a machine learning technology
designed to automatically determine the most effective non-pharmaceutical intervention
(NPI) strategies to contain the spread of COVID-19. ESP was developed by researchers at
Cognizant, a for-profit company in the United States, and the University of Texas at Austin.
The proof-of-concept for ESP was described in an article uploaded to arXiv in May 2020
[128] and published in IEEE Transactions on Evolutionary Computation in April 2021 [129].
An interactive dashboard demonstrating the technique is available online [130], hosted by
Cognizant’s Evolutionary Al team.

Pandemic modeling efforts frequently employ traditional epidemiological approaches, such
as compartment models, to predict the spread of the disease using a few approximated
parameters. These methods are imperfect, however, due to the uncertainty underpinning
their parameters and the unpredictability of some factors, such as NPIs, across cultural and
economic environments. In contrast, ESP uses near real-time data collected on pandemic
interventions, their economic impact, and disease transmission to train a long short-term
memory (LSTM) neural network capable of predicting how NPIs affect the course of the
pandemic without needing to estimate parameters [129].

ESP utilizes the COVID-19 Government Response Tracker dataset [24], maintained by
Oxford University Blavatnik School of Government, which contains 23 different indicators,
including containment measures, economic factors, health system descriptors, and vaccine
policies, among others. It also includes data representing different NPIs characterized by
measures of stringency, in which historical data has been encoded for over 180 countries.
These data have been collected since March 2020, and have been updated regularly,
though some economic and health system policies have not been updated since August
2021. ESP developers acknowledge that the dataset is noisy, given discrepancies in how
different countries detected and reported case data, how their varying testing policies
affected case detection, and how they implemented NPIs in different ways [129]. They also
note that the dataset contains some accidental repetitions, missing days, and other
mistakes. Despite these challenges, the developers highlight that there are still enough data
to effectively train their model to make useful predictions.

In this data-driven modeling approach, ESP applies a LSTM neural network model trained
on the countries’ case numbers and NPI data (such as border closing and containment) to
predict how the pandemic will unfold under various NPIs. A Predictor model (P,) takes a
decision as its input and predicts outcomes for that decision [129]. A second model, a
Prescriptor (Ps), is then created, which takes case information for the previous 21 days as
its input and outputs actions that can optimize outcomes within that context. The Prescriptor
model is built using neuroevolution [131]-[133], evolved using the Predictor model. The
Predictor is thereby the surrogate for the development of the Prescriptor, i.e. the decision
policy output, and that the Prescriptor is not restricted by a finite training dataset or its
capacity to evaluate real-world characteristics. The Predictor instead serves as a fitness
function that can be queried regularly and efficiently [129]. If actions prescribed by the
Prescriptor are enforced in the real world, data about their real-world outcomes can be fed
back into the model. ESP is therefore a continuous black-box optimization process for
adaptive decision-making whose algorithm operates as an outer loop involved in
constructing its own Predictor and Prescriptor models. On the online demonstration of this
tool, users are allowed to view case predictions across countries and regions based on
real-time data (or view historical data “counterfactuals”) and Prescriptor settings (NPlIs lifted
versus maxed out) [130].
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To evaluate the performance of their LSTM model, it was compared to a suite of baseline
machine learning regression models, including linear regression, random forest regression,
support vector regression, and feed-forward neural network regression [129]. Each method
was trained independently 10 times on a training dataset containing 14-days of 20
countries’ case data leading up to May 6, 2020, and test data consisted of data from May 7
through May 20, 2020. The LTSM model outperformed all of the baseline models across all
four metrics: normalized case mean absolute error (MAE), raw case MAE, mean rank
(ranks the methods in terms of case error for each country, and then averages over

countries), and 1-step én MAE (the loss the models were explicitly trained to minimize).

The tremendous amount of data that have become available has, according to authors,
enabled the ESP approach to be feasible for the first time [129]. As a phenomenological
data-driven model, ESP does not explain how given outcomes are produced, but because it
can be fed significant amounts of relevant data, it can provide accurate predictions of them.
It is therefore a tool that has primarily been designed with decision-makers in mind, to
provide them with a greater capacity to evaluate candidate non-pharmaceutical
interventions using predictive models. The authors state that this Al system has not been
designed to replace human decision-makers, only to augment them. Additionally, because
the dataset is not specific to one locality, it can be used by decision-makers across different
geographical contexts to inform policies specific to their geographical contexts and goals.
Indeed, the developers highlight how ESP can make creative suggestions, such as
alternating between NPIs, that achieve “maximal effect and minimal cost.” Authors stress
that the model does rely heavily on accessible, accurate, up-to-date data being available,
especially as data comes to reflect changes in the course of the pandemic (i.e. as new
variants emerge, and as different nations enforce different NPIs).

*This summary has been reviewed and approved by the initiative’s developers. More
information can be found in the Living Repository.
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GeoSpark Analytics Hyperion COVID-19 Live Dashboard

Disclaimer: Details pertaining to the technical specifications of this tool were not publicly available; the
information below was obtained from blog posts on the GeoSpark Analytics site. Furthermore, whereas the
tool was accessible to the general public in November 2020, at some point before October 2021, access was
restricted to those with an ArcGIS account associated with the Geospark Analytics team.

The Hyperion COVID-19 Live Dashboard is a dashboard that uses machine learning to
identify, track, and analyze events associated with COVID-19 via mentions on online news
articles and social media posts [134]. This tool was developed by GeoSpark Analytics, a
private computer software company, in partnership with Esri, a private geographic
information systems software supplier (most famous for their product, ArcGIS). The
dashboard was publicly announced on a blog post in April 2020 but was built upon the
GeoSpark Analytics Hyperion platform, which was developed before the COVID-19
pandemic [135].

Specific information pertaining to the data or models used by the Hyperion COVID-19 Live
Dashboard is not publicly available. A blog post describing the Hyperion platform, upon
which the dashboard was built, describes three functionalities: (1) categorizing disparate
forms of information into classes of activities using a machine learning model that learns
patterns in unstructured data to automatically recognize and categorize data from social
media, news media and other sources into themes such as social unrest, conflict and
terrorism; (2) modeling patterns of human activity by evaluating news, social media, and
other information in the location of the anomaly; and (3) continuously assessing levels of
“stability,” by comparing current activity against long-term trends (which are used to define
“normalcy”) within geographic regions [136]. In a separate blog post, they illustrate how
their dashboard has been built with these functionalities [135]. However, they do not
describe exactly what data are utilized to perform these tasks; details pertaining to the
machine learning models employed are also not available.

Geospark Analytics claims that their technology detected anomalous activity levels in
Wuhan, China, and categorized them as a disease outbreak on December 31st, 2019, eight
days before the WHO announced concern over the pneumonia outbreak [136]. In April
2020, they claimed that their dashboard had been viewed more than 15,000 times in the
previous month and that it had been integrated into other applications [135], but did not
describe in detail what these applications were.

As recently as November 2020, the dashboard was accessible to the general public on their
website. As of October 2021, however, it appears that users need to have an ArcGIS
account associated with the GeoSpark Analytics organization to access the dashboard.

More information can be found in the Living Repository.
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IBM COVID-19 Deep Search

The IBM COVID-19 Deep Search platform organizes both structured and unstructured
COVID-19 data into a knowledge graph that can be navigated and queried to retrieve
information. The Deep Search platform was developed by IBM Research Europe, based in
Zurich, Switzerland, in the first half of 2020, by members of the Scalable Knowledge
Ingestion group [137].

IBM’s Deep Search access page states that the purpose of the platform is to allow
scientists and academics to “unlock the knowledge” of published unstructured and
structured data pertaining to COVID-19 [138]. Users can do so by either navigating the
knowledge graph manually or building query workflows to extract specific answers from the
data.

Deep Search incorporates data from various unstructured and structured data sources.
Unstructured data is obtained via the COVID-19 Open Research Dataset (CORD-19) [139],
a large resource of scientific papers on COVID-19 and related historical coronavirus
research sourced from PubMed Central (PMC) [140], the World Health Organization (WHO)
COVID-19 Database [141], as well preprints from bioRxiv, medRxiv, and arXiv [16, p. 19].
Structured data included pharmaceutical and genetic databases from DrugBank [142] and
Genbank [143], as well as clinical trials from Clinicaltrials.gov [144] and the World Health
Organization International Clinical Trials Registry Platform [145]. In total, the platform is
claimed to have ingested 158,524 COVID-19-related papers from the aforementioned
sources (as of October 4th, 2021) [146], and the resulting knowledge graph contains
approximately 4 million nodes and 50 million edges [138].

Deep Search is an integration of two IBM technologies: Corpus Conversion Service (CCS)
and Corpus Processing Service (CPS). The development of both tools preceded the
COVID-19 pandemic (IBM notes their “extensive use” in the materials science, automotive,
and energy industries) but was combined and made accessible to support pandemic
response. CCS is a cloud-based platform that allows users to convert PDFs or bitmap
documents into a structured representation of the original data. CCS parses documents
(using optical character recognition to parse images), applies ML models on parsed
documents to assign semantic labels to content, and reassembles documents into a
machine-readable data format, such as JSON [147]. CPS then integrates this data into a
knowledge graph, allowing users to navigate structured data manually on the knowledge
graph interface, execute queries for specific information, and delve more deeply into
specific topics by accessing source documents [138].

Access to Deep Search is granted to scientists and academics. Those interested in using
the tool may apply for access on the IBM site [148], and according to IBM, there are 647
registered users, as of October 18, 2021.

According to IBM, CCS is capable of ingesting 100,000 PDF pages per day on a single
server with an accuracy above 97%. This capability to structure, parse, and navigate large
amounts of scientific data suggests a high potential for Deep Search to scale into areas of
research with large amounts of published (or preprinted) research and accessible data.

More information can be found in the Living Repository.
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icolung®

icolung is a cloud-based software that uses Al to analyze non-contrast thorax CT scans for
COVID-19 pathologies [149]. It generates reports highlighting lung lesions caused by
COVID-19 and quantifies volumetric lung involvement and lesion severity [150], allowing
intensive care physicians to make more informed diagnoses and treatment decisions.
icolung was developed by icometrix, a company specializing in medical imaging solutions,
with support from the radiology labs at Universitair Ziekenhuis Brussel, Katholieke
Universiteit Leuven, Vrije Universiteit Brussel, and Interuniversity Microelectronics Centre
(imec) [151]. The tool was initially created as a part of the Belgian pro bono icovid initiative
until it received funding by European Union’s Horizon 2020 research and innovation
program, the Flemish Government's “Onderzoeksprogramma Artifici€le Intelligentie
Vlaanderen” (Al Research program), and Research Foundation Flanders (FWO) later at
some point in 2020 [151]. icolung software has been in development since March 2020,
was CE certified in April 2020 [151], and FDA certified in May 2020 [152]. As of September
2021, efforts towards its development are continued by the interdisciplinary icovid
consortium, which received funding from the EU’s Horizon 2020 programme [153]. Beyond
the continuous technical improvement and addition of new features to the software, the
icovid project’s explicit goal is to demonstrate the clinical value of icolung, by measuring the
impact on clinical decision making, and to deploy it on a larger scale.

icolung comprises deep learning modules for voxel-level lesion segmentation and also for
probabilistic diagnosis of COVID-19. The latter module was trained, validated, and tested
using a collection of 1,419 scans (795 COVID-19-positive, 624 COVID-19-negative) from a
“‘pool” of centers—10 European and Latin American clinics before September 2021 (exact
dates not disclosed) [154]—complemented by 150 NSCLC-positive (non-small cell lung
cancer) CT scans acquired from the Lung Image Database Consortium (LIDC) and the
Image Data Resource Initiative (IDRI) [155] before November 2019. Out of these, 797
scans were used for training, 49 for validation, and 98 for testing [154]. Data from an
independent center containing 219 COVID-19-positive and 256 COVID-19-negative
samples were kept separate as an independent test set. The lung lesions segmentation
module was trained and validated on 61 manually annotated scans from the pooled
centers, and evaluated on 45 held-out test scans. The datasets from clinics have not been
made openly accessible [154].

The deep learning architecture underlying icolung consists of two main stages: lesion
detection followed by probabilistic COVID-19 classification. First, images are preprocessed
using a pre-trained image segmentation module, based on the 3D U-net architecture
architecture [156], which automatically labels areas of CT scans as regions of interest,
followed by a multi-class lesion segmentation approach, which uses a DeepMedic-like [157]
to identify patterns suggestive of COVID-19. Inside the diagnostic module, a conditional
variational autoencoder (CVAE) module is employed to learn COVID-19 related patterns
from the segmentations, classify each segmentation, and to assign a likelihood that the
scan stems from a COVID-19 patient [154]. When integrated into a hospital picture
archiving and communication system (PACS), an analysis can be performed on CT scans
within 10 minutes [152]. Lesions on the CT scan are color-coded and their volume is
mapped to a severity score, enabling the practitioner to analyze the lesions visually and
make an informed diagnosis.

When evaluated on a test set that incorporated data from the aforementioned pooled
centers, the diagnostic model achieved a sensitivity (that is, the proportion of
COVID-19-positive individuals it accurately diagnosed) of 94% and a specificity (the
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proportion of COVID-19-negative individuals that were correctly diagnosed) of 82% [154].
When tested using data from an independent medical center, the model achieved a slightly
higher sensitivity, 96%, but significantly lower specificity, 59% [154].

icolung is currently CE-certified, FDA-permitted, GDPR-compliant, and offered pro bono
worldwide [151]. It has been adopted by over 150 clinics, and the icovid collaborative is
striving to distribute the software to 800 medical clinics worldwide [151]. A favorable aspect
of the system is that it allows for interpretability via visualizations, as explained above, and
that it offers condensed representations of the detected abnormalities, in the form of
severity scores, allowing for rapid interpretation. The code for training the deep learning
models is hyperlinked in the paper [154]; however, as of December 13, 2021, this link is
inaccessible. The tool’s robustness across patient demographics and COVID-19 variants
have yet to be empirically validated; to expand this tool's uptake across demographic
groups and the COVID-19 pandemic life cycle, it will be necessary to demonstrate
robustness in these metrics. In fact, the icovid consortium is presently running a reader
study, which will, through the format of a controlled trial with several radiological expert
users, quantify unequivocally the benefit of icolung towards clinical image interpretation and
decision making.

*This summary has been reviewed and approved by the initiative’s developers. More
information can be found in the Living Repository.
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Johns Hopkins US Risk Model

The Johns Hopkins US Risk Model is a county-level COVID-19 risk modeling framework
intended to assist the US government and individuals in making informed decisions. The
project was announced in September 2020 by researchers at Johns Hopkins Center for
Systems Science and Engineering, with funding from the US National Science Foundation,
National Institute of Allergy and Infectious Diseases, and NASA [158].

In a blog post announcing this initiative, researchers shared that the goal of their modeling
is to identify at-risk populations and to learn the locations and attributes of those that are
most exposed to the risk of infection and death from COVID-19 [158]. To this end,
researchers claim to have constructed their risk-modeling framework using a “flexible
approach” that would allow them to model different risk indicators for different use cases
[158]; however, a more in-depth explanation of how this was achieved is not provided.

In building the risk modeling framework, the initiative relied on US epidemiological, mobility,
and demographic data from numerous sources [158]. Epidemiological data are drawn from
the Johns Hopkins COVID-19 Data Repository, which aggregates authoritative,
publicly-available COVID-19 case, death, and recovery rates from across the globe at
various levels of granularity—from country-wide to city-wide, depending on availability of
data [25]. Mobility data were sourced from mobile phone usage data and provided by
SafeGraph. It appears, however, that while SafeGraph provided social-distancing metrics
for free at the peak of the pandemic, such data have now been wrapped into their Weekly
Patterns product, for purchase [159]. Both population and health indicators were gathered
from the US census (population totals, demographic percentages, and age breakdowns),
County Health Rankings (smoking percentages, poverty, and chronic disease), and the
Definitive Healthcare Dataset published by ESRI (Statistics on hospital beds and
availability) [158].

Models developed for forecasting COVID-19 risks at the local, state, and national levels use
different statistical methodologies, such as multiple linear regression, logistic regression,
random forest regression/classification, and curve fitting [158]. Researchers explored
techniques that could further improve predictive capabilities, such as ensemble
approaches, input clustering, and deep learning [158]. They claimed to have modeled
several different aspects of the outbreak, including cases and deaths over different time
horizons, case and death curves’ deviations from current trends, case and death rates per
person, risk categories based on time-dependent rates of change, and categorical
epidemiological classifications [158]. Details describing which sets of data were used for
any particular model were not disclosed.

This initiative’s site displays a map that visually compares projected quantiles of new cases
in each county during the first two weeks of August 2020 (output from the model) to
observed cases reported, with striking similarities [158]. However, it is unclear whether this
initiative is still under development, whether it is or was used and by whom, and what the
process is for obtaining access to the model or its predictions. It is difficult to assess the
technical scalability of this tool for numerous reasons, including the ambiguity concerning
the licensing of this tool, the minimum amount of data required for any particular model, the
accessibility of its data (namely, mobility data which is no longer available for free), and the
quality of the required datasets at different geographic scales from across the globe.

More information can be found in the Living Repository.
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LitCovid

LitCovid is an open-source, curated database equipped with advanced search and filtering
features designed to facilitate desktop research on topics related to COVID-19. This tool
was developed by researchers from the Text Mining/Natural Language Processing (NLP)
Research program of the U.S. National Library of Medicine/National Institutes of Health’s
(NLM/NIH) National Center for Biotechnology Information, and funded by the NLM/NIH
Intramural Research Program. After it was announced in Nature in March 2020 [160], the
first full-length paper covering its features and methods was published in Nucleic Acids
Research in November 2020 [161].

LitCovid’s curation workflow consists of four steps repeated on a daily basis: new papers
are retrieved, curated, annotated, and indexed. In the first step, also referred to as
Document Triage, candidate articles are retrieved from PubMed [162] using a broad set of
query keywords set of keywords (such as “coronavirus,” “ncov,” or “SARS-CoV-2") to
retrieve all possible relevant articles. Human curators then classify articles with the
assistance of machine learning: an ensemble of machine learning models, including
support vector machines (SVMs), using bag-of-words features, and convolutional deep
neural networks (CNNs), using word embeddings, provide human curators with a score
indicating the likelihood of an article’s relevance to COVID-19. With these scores, human
curators (with training in biomedical data sciences) make final determinations; those
deemed relevant populate the LitCovid database [163]. This curation process has been
streamlined in a newly-developed online system, LitSuggest [164].

Following curation, articles are annotated with the assistance of a deep learning model that
integrates the embeddings produced by BioBERT [165], a language model pre-trained
biological with biomedical corpora, with manually crafted features (such as publication
types). This model outputs probability scores representing the likelihood that that article
pertains to each of eight category labels: general information, mechanism, transmission,
diagnosis, treatment, prevention, case report, or epidemic forecasting. Human curators
review the probability scores and article content before approving or denying labels.
Geotagging is performed using a tool from spaCy [166], an open-source software library for
natural language processing. The tool recognizes named entities, which in this case are
geographical statements. The origin tag is then obtained by assigning the geographical
statement to its respective country using dictionaries. In addition to geographical tags, an
open-access, web-based text mining service PubTator [167] provides annotation of drugs
and chemical mentions using deep learning techniques. To make the database searchable,
the documents are indexed with the help of a web-based, open-source framework by Solr
[168], which assigns an index and attributes to each document and processes search
queries.

Each of the three methods in the curation workflow has been tested (relevance
classification, topic assignment, and geotagging) by comparing the performance of the ML
algorithms to human-annotated “ground truth” data. For each task, performance was
reported with precision, recall, and micro-F1-scores. The document classification model
was trained on ~64,000 documents and tested on 16,000 documents, achieving a micro-F1
score of 0.99 [161]. The topic assignment model was trained on ~32,000 documents taken
from the LitCovid database—and therefore considered COVID-19-relevant—as of August
12", 2020. A micro-F1-score of 0.81 was achieved on an independent test set of ~8,000
documents. Geotagging did not require additional training, and on a test set of 361 articles,
a micro-F1 score of 0.94 was achieved. While all articles used are freely accessible, the
training and test sets used are not publicly available. The authors state that the low
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performance of the topic assignment task might be caused by papers that lack abstracts
and full texts, where only a title has been provided. This holds for ~40% of the papers within
the LitCovid database [161].

Furthermore, the authors compared the set of papers found on LitCovid to those found
directly with PubMed's native search function (searched in March 2020). The LitCovid
search found 593 papers—136 more than PubMed’s native search function—and 446
papers were found by both search methods [161]. The papers that were only found by one
search engine were manually checked for COVID-19-relevance. All 147 papers that were
only found by LitCovid were proven to be COVID-19-relevant, whereas all 11 papers that
were only found by the PubMed search function were not COVID-relevant. This suggests
that LitCovid can find literature with both higher precision and better coverage [161].

The initiative demonstrates how machine learning can increase scalability and efficiency in
literature curation processes. A curated database is of high value for data-driven discovery
and evidence-based medicine, in particular at the time of a pandemic, when there is an
acute need to collect and disseminate accurate and relevant scientific findings. By July
2020, the database had been accessed more than ten million times [161]. As of January 7™,
2022, LitCovid is open-source, updated daily, and all papers within the database are freely
available [163]. It should be noted, however, that the tool is only available in English, and
the database only contains publications in the English language.

More information can be found in the Living Repository.
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nferX

nferX is a cloud-based platform that allows users to query relationships between biomedical
concepts, based on associations derived between terms in unstructured biomedical
literature and experimental—primarily Single Cell RNA-sequencing (scRNAseq)—data
[169]. This tool was developed by nference and Janssen, by researchers funded by these
two companies. It was first announced in March 2020 following nference joining the
COVID-19 Healthcare Coalition in the USA, a private sector collaboration with Mayo Clinic,
MIT Faculty, coordinated by the not-for-profit organization MITRE [170].

Data underlying the nferx platform came from two types of sources. First, a corpus of over
100 million biomedical documents—including PubMed publications, grants, preprints,
patents, and clinical trials—was developed for deriving associations from phrases in
unstructured literature. Second, a corpus of experimental data was compiled, including
publicly-available bulk RNAseq human and mouse single-cell RNA-seq data (source
undisclosed), bulk RNA-seq data obtained from Gene Expression Omnibus (GEO) [171]
and the Genotype Tissue Expression (GTEX) portal [172], immunohistochemistry (IHC) data
from the Human Protein Atlas [173], as well as tissue proteomics datasets from the Human
Proteome Map [174]. Much of these data come from open-access databases; however, the
compiled corpuses ingested by nferx are not publicly available.

Using all of these data, local and global association scores for terms are obtained with
natural language processing (NLP) methods [175]. The local score is calculated in an
unsupervised learning fashion (exact method undisclosed), which captures the strength of
association between two concepts based on the frequency of their co-occurrence
normalized by the frequency of each concept throughout the corpus [169], [175]. To
compute global scores, a word2vec model is employed, in which all words and phrases are
projected in a high-dimensional vector space of word embeddings, to construct
‘neighborhoods’ of concepts [169]. In this embedding, the concepts’ proximity (or cosine
similarity) captures their association in the literature.

In their recent publication in eLife, the developers of nferx present how their tool was used
to perform a hypothesis-free expression profiling of the ACE2 receptor, an enzyme to which
the viral spike protein of SARS-CoV-2 (and a number of coronaviruses) binds [169]. This
profiling indicated that ACE2 may be heavily expressed in tongue keratinocytes, olfactory
epithelial cells, airway club cells, and respiratory ciliated cells [169]. This work also
identified the gut as a potential hotspot of COVID-19, as small intestine enterocytes share a
maturation-correlated transcriptional signature [169].

Overall, nferX provides an innovative approach for deriving associations between
biomedical concepts. This includes SARS-CoV-2 targets, but also extends beyond
COVID-19, coronaviruses in general, and their target tissues. Systematic knowledge
management tools of this sort are of increasing importance as biomedical literature grows
intractably. Authors note that novel transformer models, such as BERT [176], could serve a
complementary function to word2vec models, by enabling greater contextual sensitivity
[169]. They also note that as protein expression can vary widely based on demographic
factors and patient pathologies, more comprehensive scRNAseq from across different
demographics and pathologies pertinent to COVID-19 will be required to reveal
“‘under-appreciated fingerprints of coronavirus transmission patterns, tissue tropism, and
mortality” [169].

More information can be found in the Living Repository.
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RADLogics Deep Learning CT Image Analysis

RADLogics Deep Learning CT Image Analysis is an Al-assisted tool designed to quickly
and accurately detect the presence of COVID-19 in thoracic CT scans [177]. The tool was
developed by RADLogics, a healthcare software company based in New York, USA and Tel
Aviv, lIsrael [178] with support from Tel-Aviv University, Affiliated Taizhou Hospital of
Wenzhou Medical University, Mount Sinai Hospital, and The University of Maryland School
of Medicine [177]. The first academic article associated with this tool was uploaded to arXiv
on March 10, 2020 [177].

RADLogics Deep Learning CT Image Analysis was developed early in the COVID-19
pandemic to respond to the growing need to quickly evaluate large numbers of thoracic CT
scans for COVID-19 detection, measurements, and the tracking of disease progression.

The model was trained on 50 thoracic CT scans of patients in China, collected between
January and February 2020, which were diagnosed by a radiologist as suspicious for
COVID-19 [177]. The cases were extracted by querying a cloud picture archiving and
communication (PACS) system for cases that were referred for laboratory testing. Each 2D
slice was annotated as normal (n=1036) versus abnormal (n=829).

The Deep Learning CT Image Analysis tool consists of two subsystems that analyze
thoracic images at a 3- and 2-dimensional level [177]. Subsystem A is a 3D analyzer for
nodules and focal opacities, implemented with off-the-shelf software. Subsystem B detects
coronavirus abnormalities using a 2D deep-learning model built on a deep convolutional
neural network architecture with ResNet-50 (pre-trained using the ImageNet dataset [179]).
Each subsystem makes predictions independently and the overall classification (the
‘corona score”) is computed based on the ratio of slices determined to be
COVID-19-positive out of the total slices of lung images from the outputs from each
subsystem.

The Deep Learning CT Image Analysis tool’s classification accuracy was tested on 107
thoracic CT scans—56 COVID-19-positive patients confirmed by RT-PCR, and 51 patients
without any abnormal findings in a radiologist’s report—and achieved an AUC of 0.996
(95%CI: 0.989-1.00) [177]. Since this article was uploaded to arXiv in March of 2020, it is
not entirely clear whether or how often the tool has been updated, or to how many hospitals
the tool has been deployed.

More training and validation would seem beneficial for assessing the transferability of this
tool. The training dataset could use a wider variety of clinical data, a larger-scale validation
could be conducted and peer-reviewed, and the tool’s capability to distinguish between
COVID-19 pneumonia and non-COVID-19 pneumonia could be evaluated (as it is not
covered by the available article). Furthermore, instructions for accessing the Deep Learning
CT Image Analysis tool are not public-facing; it appears as though interested users need to
contact RADLogics directly for access. Access to other RADLogics medical imaging tools
requires purchasing credentials to install or access (via the cloud) RADLogics’s patented
workflow software; we assume this to be the case for this tool as well.

More information can be found in the Living Repository.
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Trove

Trove is an open-source framework that allows for a low-cost and privacy-preserving
method of training of Named Entity Recognition (NER) models for patient records,
developed by the researchers at the Center of Biomedical Research at Stanford University
California. The initiative was first published in Nature Communications in April 2021 [180]
and was funded by the National Library of Medicine (NLM).

NER models enable automated extraction of relevant information and terms out of a text
document. Trove’s approach is to couple pre-trained language models such as BioBERT
[165] with ontology-based weak supervision, rather than learning with hand-labelled data, to
perform NER tasks. Researchers demonstrated this approach to be time-saving, less
expensive (by not requiring domain experts to annotate or update corpora), and achieves
task performance close to—albeit slightly lower—than fully-supervised learning frameworks
using hand-labelled data [180]. Another prominent benefit of this approach, pertinent to
pandemic response, is that by using medical ontologies rather than patient notes for
training, issues related to the storage and use of individuals’ health records are avoided,
and thus labelling rules can be shared or made publicly available.

Labels were are sourced from open-source medical ontologies [4], primarily the 2018AA
release of the Unified Medical Language System (UMLS) Metathesaurus [181]—cleaned to
remove non-English and zoonotic source terminologies—as well as 2019 SPECIALIST
abbreviations [182], Disease Ontology [183], Chemical Entities of Biological Interest
(ChEBI) [184], Comparative Toxicogenomics Database (CTD) [185], the seed vocabulary
from AutoNER [186], ADAM [187], and word-sense abbreviation dictionaries used by the
clinical abbreviation system CARD [188].

Models were trained, validated, and tested using six datasets, comprising 4,705 documents
in total, that are either publicly available as benchmark datasets or were made available to
the authors upon data use agreements with the data owners [180]. Training data were
automatically (weakly) labelled and contained 1,725 documents. The test and validation
datasets were labelled by hand and contained 1,488 and 1,492 documents, respectively. In
addition, the authors performed a COVID-19 case study, approved by the Stanford
University Administrative Panel on Human Subjects Research, using a data set of 796
emergency department notes from patients undergoing COVID-19 testing at Stanford
Health Care beginning in March 2020. These clinical data are not publicly available as they
contain information that could compromise patient privacy but can be obtained upon
request from the paper’s corresponding author [180].

Models’ performance in two categories of medical tasks were analyzed: (1) NER, and (2)
span classification, “where entities are identified a priori and classified for cue-driven
attributes, such as negation or document relative time, i.e., the order of an event entity
relative to the parent document’s timestamp” [180]. In NER tasks, weakly supervised
models trained solely using labels sourced from ontologies scored 3.9-14 F1 points lower
than fully-supervised models, but adding task-specific rules brought the weakly-supervised
within 1.3-4.9 F1 points (4.1%) of models trained on hand-labeled data. In span tasks, the
weakly supervised model task-specific rules scored 3.4-13.3 F1 points lower than
fully-supervised models. The performance of Trove was also measured in comparison with
existing weakly supervised NER methods on a disease- and chemical-recognition
benchmark task [180]. Starting from a pre-trained language model that is fine-tuned on
biological text (BioBERT), Trove performed best amongst the models that were trained
using weak supervision solely on ontologies and dictionaries (by 1.7 F1 points). When
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introducing task-specific labelling rules, Trove outperformed every other weakly-supervised
model (by at least 1.9 F1 points) and achieved performance close to systems based on
fully-supervised training with hand-labelled data. In the COVID-19 case study, a model
trained with weak supervision outperformed a supervised baseline model with hand-labelled
training data by 2.3 F1 points.

Python code for Trove is available on Github [189]. The authors note that their task-specific
labeling functions were not exhaustive—they only reflect low-cost rules easily generated by
domain experts—and that increasing the number of task-specific labelling rules might
further improve the model's performance. They also suggest that incorporating data
augmentation or multitask learning could mitigate the need to engineer task-specific rules. It
should be noted that this framework is English-language specific and its performance in
non-English settings have yet to be evaluated.

More information can be found in the Living Repository.
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Universal Masking is Urgent in the COVID-19 Pandemic: SEIR and Agent
Based Models, Empirical Validation, Policy Recommendations*

Universal Masking is Urgent in the COVID-19 Pandemic: SEIR and Agent Based Models,
Empirical Validation, Policy Recommendations is a preprinted research article [190] and an
associated online, interactive, agent-based simulation [191] that models the spread of
COVID-19 based on the prevalence of mask-wearing in a population. The researchers
involved are affiliated with the Hong Kong University of Science and Technology, the
International Computer Science Institute, Ecole de Guerre Economique, the University of
Cambridge, Manifold research, University College London, ELU Al Ltd, the Royal Free
Hospital, London, and the Population Research Institute at The Family Federation of
Finland. Both the research article and online masking simulator became accessible in April
2020.

The objective of this study was to evaluate the effectiveness of mask-wearing in preventing
the spread of COVID-19 with new theoretical models and empirical data-analysis
techniques. Researchers aimed to build a base of evidence to support the urgent
implementation of universal masking in regions that had not yet adopted it as policy or as a
broad cultural norm.

The research article presents two models for predicting the impact of universal face
mask-wearing upon the spread of the SARS-CoV-2 virus during the pandemic: a stochastic,
dynamic, network-based, compartmental, susceptible-exposed-infectious-recovered (SEIR)
approach; and an individual agent-based modeling (ABM) Monte Carlo simulation [190]. For
the former approach, researchers used a SEIR model implemented on a stochastic
dynamic network, rather than a deterministic SEIR model, as it more closely represented
interactions between individuals in a large population. Parameters were tuned to model
different degrees of social distancing, lockdown stringency, and mask-wearing, and the
empirical characteristics of COVID-19 spread as documented in the “SEIRS+” COVID-19
notebooks [192]. For the latter approach, researchers created a square wraparound
two-dimensional environment, within which a population of individuals could exist in one of
four SEIR states. The wraparound feature allowed the environment to represent an
arbitrarily large space, giving more accurate dynamics without boundary effects from small
spaces. Parameters were tuned to best approximate known COVID-19 dynamics, and the
impact of masking was modeled by allowing for variation in mask-wearing and mask
characteristics, with mask transmission rate (T) and mask absorption rate (A) denoting the
proportion of viruses that are stopped by masks during exhaling (transmission) versus
inhaling (absorption), respectively [190].

The SEIR and ABM predictive models demonstrated that: (1) near-elimination of COVID-19
transmission when least 80% of a population is wearing masks, versus minimal effect on
transmission when only 50% or less of the population is wearing masks, and (2) a
significant impact when universal masking is adopted early (by day 50 of a regional
outbreak), versus minimal impact when universal masking is adopted late (after day 50)
[190].

To validate their models, the researchers compared their results with what little (at the time)
historical macro-scale empirical data were available. They collected a data set describing
the “degree of success” in managing COVID-19 by countries or regions and by the
prevalence or enforcement of universal masking. The dataset contained the number of
detected COVID-19 cases from Jan 23 to April 10, 2020, and the characteristics of
universal masking culture and/or universal masking mandates or government

Al-POWERED IMMEDIATE RESPONSE TO PANDEMICS:



a
v

recommendations within 38 countries/provinces in Asia, Europe, and North America with
similarly high levels of economic development. This empirical data validated the predictive
models’ findings for the need for universal and early masking. It is also noteworthy that a
study published in November 2021 by Talic et al. [193] furthermore validated these
predictions, identifying a 53% reduction in incidence due to mask-wearing.

Since this research involved predictive, simulated models, it would be relatively easy to
reproduce: models could be tuned to more accurately simulate COVID-19 spread,
considering the far greater amount of empirical data on COVID-19 variant characteristics
and on geographical masking culture/mandates/recommendations than when the study was
initially conducted in April 2020. There also exists a much greater amount of COVID-19
transmission data against which these models may be validated. It should be noted,
however, the degree of uncertainty with regards to the influence that a larger base of
evidence would have in changing norms or policies concerning mask-wearing.

*This summary has been reviewed and approved by the initiative’s developers. More
information can be found in the Living Repository.
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